
GN: A Modern Build
System For BSD ?

https://gn.googlesource.com/gn

Bucharest, Septembre 23rd 2018

Benjamin Jacobs

(Original) Motivation
As an easy way to import LLVM into
DragonFlyBSD base
Under a (naive) assumption, given that:

Upsream LLVM uses CMake which
generates Ninja files
GN generates Ninja files
~-> With little effort it could be possible
to merge both (?)

What is GN ?
Developped at Google to replace Gypp
Used to build the chromium browser and the
chrome OS since 2016
Generates Ninja files
Can also generate VS and XCode projects
Used to live inside the chromium repository
C++ code base
Uses 200+ C++ file from base and platform
support libraries of chromium + libevent
3.8MB all statically linked
3-Clause BSD License

(And Ninja?)
«It is designed to have its input files
generated by a higher-level build system, and
it is designed to run builds as fast as
possible.» (https://ninja-build.org/)
Computes the dependency graph and
executes the commands used to update
inexisting or outdated target
Also updates a target when the command
has been changed, e.g. modifying CFLAGS.
Some well known generators: CMake,
meson.
Apache License 2.0

What Could Be a
Modern Build

System?
Performant*
Correct
Easy to use and still powerful enough
But more importantly, hard to misuse
Extensible ?

*: See http://gittup.org/tup/ Mike Shal's paper
(2009)

For BSD?
Open source license
Community support
Portable C/C++ codebase
Better cross-compilation support
Your answer at the end?

GN's Language
gn help grammar

Simple C-like syntax
Booleans, integers, strings and (nestable)
lists variables
Primitive expressions: value substitution, list
concatenation, logical, …
Primitive control structures: foreach
(iterator, list) {...} and if
(expr) {...}

Limited path substitution functions, e.g. to
construct path relative to the build directory
Script can be run at the evaluation/generation
stage whose output can be used by GN itself.
Note: The language is evaluated, however
the separation imposed between the
generation phase and the
compilation/building phase makes it "mostly
declarative".

GN's Language
(continued)

Higher-level elements:
targets
configurations
args: build knobs (versus
/etc/default/make.conf)
toolchains
template: macro-like construction, e.g.

Hygenic and strict variable propagation and
scoping rules
Import (versus make's #include)

Only a Handful of
Target Declaration

Types
Builtin types: It is not possible to define
arbitrary rules like Make's wildcard rules
(sys.mk)!
Strictly tailored towards the C language:

executable

loadable_module

shared_library

static_library

source_set: like a static library without
the intermediary linking step, to be used
as dependency

A toolchain provides the actual command
to be run
The action / action_foreach targets can
call out to an external command. This is
mostly used to replace inline sh/sed/awk
rules generating files.

More Targets
action / action_foreach: run an external
script
macOS specifics
file copy
group: meta target

Toolchain Definition
gn help toolchain / gn help tool
Compiling tools: "cc", "cxx", "objc", "objcxx",
"rc", "asm"
Linking tools: "alink", "solink", "link"
There must be a single "default" toolchain
defined but a target can be build using
another one
When it is the case, all the dependency graph
will be duplicated using the other toolchain
GN determines the compiler to be used by
looking at the file extension (hardcoded)
Causes an issue with .c files which really
need to be compiled in C++ mode, e.g.
binutils's gold.

Target configuration elements
Hold include directories, defines, compiler *flags, an inputs
dependencies.
Can be specified on the target element or can be named and
referenced by targets using configs, public_configs or
all_dependent_configs.

config ("xxx_config") {

 includes = [".", "//contrib/xxx/include"]

 defines = ["HAVE_FOO"]

}

target ("executable") { ... configs = [":xxx_config"] }

Config are merged together: include directories, cflags
public_configs or all_dependent_configs also apply to
direct dependent, or transitively to all dependent's dependents.
Help avoiding the proliferation of those unnecessary or redundant -
I../../path/ and -Ddefines
GN Goodie: header check mode: search for C #include "file",
where the include search directory wouldn't have been provided
explicitely or implicitely by transitive dependencies.

Args, and Special
Variables or
Functions

target_gen_dir, target_out_dir,
get_target_outputs().
rebase_path()

Whose values vary with the current toolchain

GN file locations,
labels and references

Label are use to reference target,
dependencies, or config.
3 kind of reference:
/absolute/target:name,
relative/target:name and //root-
of-sources/relative/target:name

references.
Looks for a name target defined in the
target/BUILD.gn file.
Alternate hierachy is possible, to avoid
cluttering the tree with BUILD.gn files.

Optimistic
demonstration

Final Words and
Feedback

It is all about lowering the burden of
maintaining build scripts.
What is your experience ?

